ENGR 1020 Freshman Engineering Seminar Initial Assessment Key

If you wish to use any of the libraries noted below, then you will need to copy and paste the
following commands in R first
install.packages("install.load") # install the install.load package
library(install.load) # load the install.load package (library)
install_load("mosaic", "Deriv", "DescTools", "prob", "signal", "pracma") # does not require
system dependencies
install_load("mosaic", "Ryacas", "Deriv", "DescTools", "prob", "signal", "pracma", "rSymPy")
install and load the named packages and all of their dependencies, including the system
dependencies (this process may take a while depending on the number of dependencies)

Solve the following problems:

1) \[\int x^2 + 2x - 2 \, dx \]

\[\frac{x^3}{3} + x^2 - 2x + C \]

library(mosaic)
antiD(x^2 + 2*x - 2 ~ x)

function (x, C = 0)
1/3 * x^3 + 1 * x^2 - 2 * x + C

library(Ryacas) # requires yacas
x <- Sym("x")
Integrate(x ^ 2 + 2 * x - 2, x)

x^3/3 + x ^ 2 - 2 * x

library(rSymPy) # requires Java, Jython, Python
sympy("integrate(x**2 + 2*x - 2, x)"

[1] "-2*x + x**2 + x**3/3"

2) \[\frac{d}{dx} (x^2 + 2x - 2) \]

\[2x + 2 \]

base R
simp.exp <- expression(x^2 + 2*x - 2)
(D.sc <- D(simp.exp, "x"))

2 * x + 2
library(Deriv)
f <- function (x) x ^ 2 + 2 * x - 2
Deriv(f)

function (x)
2 + 2 * x

library(mosaic)
D(x^2 + 2*x - 2 - x)

function (x)
2 * x + 2

library(Ryacas) # requires yacas
x <- Sym("x")
deriv(x ^ 2 + 2 * x - 2, x)
2*x+2;

library(rSymPy) # requires Java, Jython, Python
sympy("diff(x**2+2*x-2, x, 1)")
[1] "2 + 2*x"

3) If x = 5, then what is \(x^2 + 2x - 2 \)?

x <- 5
x^2 + 2 * x - 2
[1] 33

4) 5, 2, 4, 6, 9.2, 10.0, 100, 7, 2 Please round your answer to the nearest tenth

A) What is the mean of the above data set?

mean(c(5, 2, 4, 6, 9.2, 10.0, 100, 7, 2))
[1] 16.13333

B) What is the median of the above data set?

median(c(5, 2, 4, 6, 9.2, 10.0, 100, 7, 2))
[1] 6

C) What is the mode of the above data set?
5) If you have a standard 54 card deck, what is the probability that you will pick any card from the Hearts suite?

13/54 or 13/52 (no Jokers)

```r
library(prob)
cds <- cards(jokers = TRUE, makespace = TRUE) # include the probability column in the cards function and create a data.frame called cds of the cards function
Heart <- subset(cds, suit == "Heart") # subset cds with only the Heart suit
Heartprob <- Prob(Heart) # Calculates the probability
Heartprob
[1] 0.2407407
```

or

```r
library(prob)
cds <- cards(makespace = TRUE) # include the probability column in the cards function and create a data.frame called cds of the cards function
Heart <- subset(cds, suit == "Heart") # subset cds with only the Heart suit
Heartprob <- Prob(Heart) # Calculates the probability
Heartprob
[1] 0.25
```

*6) What is the angle between force \(F \) and the x-axis, where \(F = 30i + 50j - 20k \) newtons?

a) 30°

b) 65.8°

c) 60.9°

d) 12.8°

\[
\begin{align*}
Fx & <- 30 \# 30i \\
Fy & <- 50 \# 50j \\
Fz & <- -20 \# -20k \\
\end{align*}
\]

```r
cos_thetax <- Fx / sqrt(Fx ^ 2 + Fy ^ 2 + Fz ^ 2)
thetarad <- acos(cos_thetax) # radians
theta <- thetarad * (180 / pi) # degrees
theta
[1] 60.87843
```
*7) Solve the equation $x(2x - 3) = 5$ for x.

a) -1

b) $\frac{5}{2}$

c) 3

d) both a) and b)

library(signal)
roots(c(2, -3, -5))
[1] -1.0-0i 2.50i

library(pracma)
roots(c(2, -3, -5))
[1] 2.5 -1.0

library(pracma)
fzero(function(x) 2 * x ^ 2 - 3 * x - 5, 2)
x
[1] 2.5 = 5/2
$fval$
[1] 0

fzero(function(x) 2 * x ^ 2 - 3 * x - 5, -2)
x
[1] -1
$fval$
[1] 0

*8) Solve this system of equations:

$x - y + z = -3$

$2x + y = 1$

$y - 3z = 7$

a <- matrix(c(1, -1, 1, 2, 1, 0, 0, 1, -3), nrow = 3, ncol = 3, byrow = TRUE)
b <- c(-3, 1, 7)
solve(a, b)
[1] 0 1 -2

a) $x = 0, y = -11, z = 2$

b) $x = 0, y = 1, z = -2$
c) \(x = 1, y = -1, z = 0 \)
d) \(x = 0, y = 2, z = -6 \)

*A segment of a spreadsheet is shown below. Use the numbers in the cells to answer the following questions.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>A2^2</td>
<td>B2*A$1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>A3^2</td>
<td>B3*B$1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>A4^2</td>
<td>B4*C$1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>A5^2</td>
<td>B5*D$1</td>
<td></td>
</tr>
</tbody>
</table>

*9) What will be the top to bottom values in column B?

a) 25, 30, 35, 40
b) **25, 36, 49, 64**
c) 40, 42, 44, 46
d) 5, 6, 7, 8

```r
A <- c(20, 5, 6, 7, 8)  
A = 20 5 6 7 8
```

```r
B = 21 25 36 49 64
```

```r
D <- 23
```

```r
C = 22 500 756 1078 1472
```

*10) What will be the top to bottom values in column C?

a) 25, 36, 49, 64
b) 100, 126, 154, 184
c) **500, 756, 1078, 1472**
d) 125, 196, 34, 2

Works Cited